Declaration of conformity for products with Model EPDs

FEICA (Association of European Adhesive & Sealant Industry) has developed so-called Model Environmental Product Declarations (Model EPDs) and had them independently verified by the Institute Construction and Environment (IBU). These IBU verified Model EPDs have been made publicly available by FEICA and IBU. The Model EPDs represent the current production technology in Europe. ARDEX GmbH as a member of Deutsche Bauchemie e.V., which is a national association member of FEICA, has the right to declare that a specific FEICA Model EPD applies to the named product listed below. The compliance of our products to the Model EPDs is checked on the base of our formulations, by using an IBU-approved guideline procedure. We hereby declare that the product

ARDEX WA, Epoxy grout and adhesive

meets the criteria of the attached Model EPD

EPD-FEI-20150300-IBG1-EN for "Reactive resins based on epoxy resin, filled and/or aqueous with high content of filler"

This means that the life cycle assessment data and other content of the Model EPD apply to these named products and may be used for sustainability assessment of the construction products and construction projects, in which they are used.

ARDEX GmbH

Martins Stofper

Dr. Markus Stolper Managing Director for Marketing and Sales

Dr. Julia Soldat Global Sustainability Manager

ARDEX GmbH Friedrich-Ebert-Straße 45 58453 Witten www.ardex.de

Tel.: +49 2302 664-511 Fax: +49 2302 664-298 kundendienst@ardex.de www.ardex.de

ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of

Publishe

ECO EP Issue da Valid to

of the Declaration	FEICA - Association of the European Adhesive and Sealant Industry
nme holder	Institut Bauen und Umwelt e.V. (IBU)
	Institut Bauen und Umwelt e.V. (IBU)
tion number	EPD-FEI-20150300-IBG1-EN
PD Ref. No.	ECO-0000347
ite	14.12.2015
	13.06.2022

Reactive resins based on epoxy resin, filled and/or aqueous with high content of filler FEICA - Association of the European Adhesive and Sealant Industry

www.bau-umwelt.com / https://epd-online.com

FEICA - Association of the European Adhesive and Sealant Industry

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number EPD-FEI-20150300-IBG1-EN

This Declaration is based on the Product Category Rules:

Reaction resin products, 07.2014 (PCR tested and approved by the SVR)

Issue date

14.12.2015

Valid to 13.06.2022

Wiemanes

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Mann

Dr. Burkhart Lehmann (Managing Director IBU)

2. Product

2.1 Product description

Reactive resins based on epoxy resin, filled and/or aqueous filled

The reactive resins are manufactured in a twocomponent process using reactively-diluted epoxy resins and polyamines. The aqueous systems can be formulated as aqueous dispersions on the resin or hardening agent side.

They comply with multiple, often specific tasks in the construction, fitting and repair of structures. By using reactive resins based on epoxy resin, filled and/or aqueous filled, the fitness for use of structures is decisively improved and their life time extended. The product displaying the highest environmental impacts was used as a representative product for calculating the Life Cycle Assessment results (worst case-approach).

2.2 Application

Reactive resins based on epoxy resin, filled and/or aqueous filled, are used in the following applications:

Reactive resins based on epoxy resin, filled and/or aqueous with high content of filler

Owner of the Declaration

FEICA - Association of the European Adhesive and Sealant Industry Avenue E. van Nieuwenhuyse 4 1160 Brussels Belgium

Declared product / Declared unit

1 kg reactive resin based on epoxy resin, filled and/or aqueous filled; density 1.1 - 2.5 g/cm³

Scope:

This validated Declaration entitles the holder to bear the symbol of the *Institut Bauen und Umwelt e.V.* It exclusively applies for products produced in Europe and for a period of five years from the date of issue. This EPD may be used by FEICA members and their members provided it has been proven that the respective product can be represented by this EPD. For this purpose a guideline is available at the FEICA secretariat. The members of FEICA are listed on its website. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm /EN 15804/ serves as the core PCR Independent verification of the declaration

according to /ISO 14025/

internally x externally

Mr Olivier Muller (Independent verifier appointed by SVR)

Module 1: Reactive resins for protecting and repairing concrete structures

Products for **surface protection of concrete**, for increasing the durability of concrete and reinforced concrete structures as well as for new concrete and for maintenance and repair work, products for **structural and non-structural repair** used for restoring the original condition of concrete structures and/or replacing faulty concrete and providing reinforcements with protection; products for **structural bonding** of strengthening materials to an existing concrete structure and **products for concrete injection** for filling cracks, voids and interstices in concrete. **Module 2:** Reactive resins for liquid applied roof waterproofing kits

Reactive resins for waterproofing roof constructions which are applied on the construction site **Module 3:** Reactive resin primer for bridge waterproofing Primer for bridge waterproofing for use on bridges made of concrete

Module 4: Reactive resins as adhesive for tiles

Tile adhesives for internal and external tile installations on walls, floors and ceilings.

Module 5: Reactive resins for watertight covering kits Watertight covering kits for wetroom floors and/or walls inside buildings

Module 6:Reactive resins for liquid applied waterproofings for buildings

Liquid applied products for waterproofing of buildings **Module 7:** Screed material and floor screeds Products for screed / synthetic resin screed for use in

floor constructions **Module 8:** Reactive resins for waterproofing components made of concrete or brickwork and for pre-treating mineral sub-surfaces such as screed or concrete flooring prior to flooring, parquet and tiling work

Applications in accordance with the manufacturer's technical documentation / declaration of performance **Module 9:** Reactive resins for optical design of concrete components

Products for usually coloured design of concrete accompanied by less-specified surface protection and improved durability of concrete and reinforced concrete surfaces. The same applies for other mineral subsurfaces such as plaster, stone and brickwork. On account of the susceptibility of epoxy resin layers to weathering factors (yellowing, whiting after extensive weathering), a final polyurethane-based coating is usually applied to epoxy layers in outdoor applications.

2.3 Technical Data

Module 1: Reactive resins for protecting and repairing concrete structures

The minimum requirements of /EN 1504/ apply. These are:

1.1 **Surface protection** systems for concrete – Requirements on performance characteristics for all intended uses in accordance with /EN 1504-2:2005-01/, Tables 1 and 5:

- Permeability to CO2 (/EN 1062-6:2002-10/)
- Water vapour permeability (/EN ISO 7783-1/-2:2012-02/)

- Capillary absorption and permeability to water (/EN 1062-3:2008-04/)

- Adhesive strength by pull off test (/EN 1542:1999-07/)

1.2 Products for **structural and non-structural repair** – Requirements on performance characteristics for all intended uses in accordance with /EN 1504-3/, Tables 1 and 3:

- Compressive strength (/EN 12190/)
- Chloride content (/EN 1015-17/)

- Adhesive strength by pull off test (/EN 1542:1999-07/)

1.3 Products for **structural bonding** – Performance characteristics for all intended uses in accordance with Tables 3.1 and 3.2 (manufacturer's declaration of performance)-

1.4 Products for **concrete injection** for filling cracks, voids and interstices in concrete– Requirements on performance characteristics for all intended uses in accordance with /EN 1504-5:2005-03/, Table 3:

- Injectability (/EN 1771:2004-11/)
- Viscosity (/EN ISO 3219:1994-10/)

Other performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

Module 2: Reactive resins for liquid applied roof waterproofing kits

The minimum requirements of /ETAG 005/ apply.

The performance requirements must be indicated in accordance with the European Technical Assessment (ETA, no.).

Module 3: Reactive resins for liquid-applied bridge deck waterproofing kits

The minimum requirements of /ETAG 033/ apply. The performance characteristics must be indicated in accordance with the European Technical Assessment (ETA, no.).

Module 4: Reactive resins as adhesive for tiles The minimum requirements in accordance with /EN 12004:2012-09/ apply. These are:

- Initial shear adhesion strength (/EN 12003:2009-01/)

- Shear adhesion strength after water immersion (/EN 12003:2009-01/) Open time: tensile adhesion strength (/EN 1346:2007-11[H1] /)[IM2] Other performance characteristics in accordance with the manufacturer's technical documentation / Declaration of Performance

Module 5: Reactive resins for watertight covering kits The minimum requirements of the /ETAG 022/ apply. The performance characteristics must be indicated in accordance with the European Technical Assessment (ETA, no.).

Module 6: Reactive resins for liquid applied waterproofings for buildings

Module 7: Screed material and floor screeds The minimum requirements of /EN 13813:2003-01/ apply. For synthetic resin screeds, these are:

Bond strength (/EN 13892-8:2003-02/)

Reaction to fire (/EN 13501-1:2010-01/)

Performance characteristics in accordance with the manufacturer's technical documentation / declaration of performance

Module 8: Reactive resins for waterproofing components made of concrete or brickwork and for pre-treating sub-surfaces such as screed or concrete flooring prior to flooring, parquet and tiling work At least the following requirements must be fulfilled:

Name	Value	Unit
Shore hardness A /ISO 7619-1,2/	> 50	
Shore hardness D /ISO 7619-1,2/	> 25	
Density /EN ISO 2811: 2011-06/	0,9 - 2	kg/dm³
Viscosity /EN ISO 3219: 1994-10/	< 200	Pas

Other performance characteristics are in accordance with the manufacturer's technical documentation / declaration of performance

Module 9: Reactive resins for optical design of concrete components

Physical data on the coating material and/or coating must be indicated in accordance with the respective product standards; these can include, for example:

- Viscosity (/EN ISO 3219:1994-10/)
- Density (/EN ISO 2811:2011-06/)
- Pendulum damping (/ISO 1522:2007-04/)
- Reaction to fire (/EN 13501-1:2010-01/)
- Tensile strength (/EN 13892-8:2003-02/)

Other performance characteristics are in accordance with the manufacturer's technical documentation / declaration of performance.

2.4 Placing on the market / Application rules For the placing on the market in the EU/EFTA (with the exception of Switzerland) products falling under the Regulation (EU) No 305/2011 need a Declaration of Performance taking into consideration either the

relevant harmonised European standard or the European Technical Assessment and the CE-marking. For the application and use of the products the respective national provisions apply.

2.5 Delivery status

Liquid or pasty in containers made of tinplate or plastic appropriately prepared in separate or combi-containers for the practical mixing ratio. One kg of product in individual containers. Sealants in plastic cartridges and poly-tube bags made of foil compound materials. Typical container sizes contain 10 to 25 kg of material. For more extensive applications, vats containing approx. 200 kg or IBCs containing more than 1 tonne are also used.

A sheet steel container was modelled for the Life Cycle Assessment.

2.6 Base materials / Ancillary materials

Reactive resins based on epoxy resin, filled and/or aqueous filled, comprise resin and crosslinking agent components. Aqueous, filled systems can be formulated as aqueous dispersions on the resin or crosslinking agent side.

The resin component contains low-molecular epoxy resins based on Bisphenol-A and Bisphenol-F Diglycidether. Reactive diluting agents (Glycidether) based on aliphatic alcohol are used for viscosity adjustment. Crosslinking occurs when installed on site with the amine component. Polyamines and polyamine adducts based on IPDA, MXDA, TMDA and TEPA are used for this purpose. The components can contain accelerators, catalysts, wetting agents, foam regulators, inert diluting agents (no solvents) for fine adjustment of the product properties as auxiliaries (restrictions governing application or placing on the market must be observed).

The mixing ratio for resin and crosslinker is adjusted in accordance with the stoichiometric requirements. Product crosslinking starts immediately after mixing the components.

On average, the products covered by this EPD contain the following range of base materials and auxiliaries: Resin component: ~ 5-50%

Crosslinker component: ~ 5-15% Reactive diluting agent: ~ 0-20% Filler material: 20-70%

Water: 0-10%

Other: ~ <4%

The ranges referred to above are average values and the composition of products complying with the EPD can deviate from the concentration volumes referred to in individual cases. Deviations are possible. More detailed information is provided by the respective manufacturer (e.g. product data sheets). In individual cases, it is possible that substances on the list of particularly harmful substances for inclusion in Annex XIV of the /REACH/ Ordinance are included in concentrations of more than 0.1%. If this is the case,

in concentrations of more than 0.1%. If this is the case this information can be found in the respective safety data sheet.

2.7 Manufacture

The product components formulated are usually mixed from the ingredients in batch mode and packaged for delivery, whereby quality and environmental standards in accordance with /ISO 9001:2008-12/ and the provisions outlined in the relevant regulations such as the Industrial Safety Regulation and Federal Pollution Control Act are adhered to.

2.8 Environment and health during manufacturing

As a general rule, no other environmental protection measures other than those specified by law are necessary.

2.9 Product processing/Installation

Reactive resins based on epoxy resin (filled and/or water-filled) are

are processed by trowelling/knife-coating or rolling, pouring, spraying or injection, whereby health and safety measures (hand and eye protection, ventilation, respiratory equipment) are to be taken and consistently adhered to in accordance with the information on the safety data sheet and conditions on site. VOCemissions may occur.

2.10 Packaging

A detailed description of packaging is provided in section 2.5. Empty containers and clean foils can be recycled.

2.11 Condition of use

During the use phase, reactive resins based on epoxy, unfilled/solvent-free, are crosslinked and essentially comprise an inert, three-dimensional netwoirk. They are long-lasting products which protect our buildings in the form of primer, coatings or sealings and make a significant contribution towards retaining their function and long-term value

2.12 Environment and health during use Option 1 – Products for applications outside

indoor areas with permanent stays by people During use, reactive resins based on epoxy, filled and/or aqueous filled, lose their reactivity and react inert.

No risks are known for water, air and soil if the products are used as designated.

Option 2 – Products for applications inside indoor areas with permanent stays by people

When used in indoor areas with permanent stays by people, evidence of the emission performance of construction products in contact with indoor air must be submitted according to national requirements. No further influences on the environment and health by emanating substances are known.

2.13 Reference service life

Reactive resins based on epoxy resin, aqueous (unfilled), comply with various, often specific tasks associated with the construction or refurbishment of building structures. Use thereof decisively improves the usability of building structures and significantly extends their Reference Service Life. The anticipated Reference Service Life depends on the specific installation situation and associated product exposure. It can be influenced by weather factors as well as by mechanical or chemical loads.

2.14 Extraordinary effects

Fire

Even without any special fire safety fittings, the reactive resins based on epoxy, unfilled/solvent-free, comply with the minimum requirements of /EN 13501-1/ for fire class E and Efl. In terms of the volumes used, they only have a subordinate effect on the fire characteristics (e.g. smoke gas development) of a

building in which they are installed. As cross-linked epoxy resins involve a duroplastic material, it does not melt or drip with the result that the resins do not contribute to fire spread, whereas the combustibility of cross-linked epoxy resins is greater than that of other duroplastics. Among other substances, formaldehyde and phenol can be formed in the event of a fire.

Water

The reactive resins based on epoxy, unfilled/solventfree, are chemically inert and water-insoluble. They are often used for protecting building structures from harmful water ingress / the effects of flooding.

Mechanical destruction

Mechanical destruction of reactive resins based on epoxy resin does not lead to any decomposition products which are harmful to the environment or health.

2.15 Re-use phase

According to present knowledge, no environmentallyharmful effects are generally anticipated in landfilling, for example, as a result of de-construction and recycling of building materials to which crosslinked epoxy resin products are adherent.

If epoxy systems can be removed from construction products without any noticeable effort, thermal utilisation is a practical recycling variant on account of their energy content.

3. LCA: Calculation rules

3.1 Declared Unit

This EPD refers to the declared unit of 1 kg reactive resin based on epoxy resin, filled and/or aqueous filled of density 1.1 - 2.5 g/cm³ in the mixing ratio required for processing both components in accordance with the PCR Part B for Reactive resin products. Consumption per unit area of the products to be applied extensively can range between only a few hundred grams and more than 1 kg per square metre. In the case of products, which are injected, the application volume depends on the component to be injected.

The results of the Life Cycle Assessment provided in this declaration have been calculated from the product with the highest environmental impact (worst-case scenario).

Declared unit

Name	Value	Unit
Declared unit	1	kg
Conversion factor to 1 kg	1	-

3.2 System boundary

Modules A1-A3, A4, A5 and D are taken into consideration in the LCA:

- A1 Production of preliminary products
- A2 Transport to plant
- A3 Production incl. provision of energy, production of packaging as well as auxiliaries and consumables, waste treatment)
- A4 Transport to site
- A5 Installation (disposal of packaging & installation losses and emissions during installation)

Minor adhesion is not taken into consideration during disposal. It does not interfere with disposal/recycling of the remaining components / building materials.

2.16 Disposal

Individual components which can no longer be recycled must be combined at a specified ratio and hardened.

Hardened product residue is not special waste. Non-hardened product residue is special waste. Empty, dried containers (free of drops and scraped clean) are directed to the recycling process. Residue must be directed to proper waste disposal taking consideration of local guidelines.

The following European Waste Codes waste (EWC) codes can apply:

Hardened product residue:

/EWC 2000/532/EC 080112/ with the exception of those covered by /EWC 2000/532/EC08 01 11/ /EWC 2000/532/EC 080410/ with the exception of those covered by /EWC 2000/532/EC 08 04 09/

2.17 Further information

More information is available in the manufacturer's product or safety data sheets and is available on the manufacturer's Web sites or on request. Valuable technical information is also available on the associations' Web sites.

• D Credits from incineration of packaging materials & installation losses and recycling the metal container

The declaration is therefore from "cradle to gate - with options".

3.3 Estimates and assumptions

Where no specific /GaBi/ processes were available, the individual recipe ingredients of formulation were estimated on the basis of information provided by the manufacturer or literary sources.

3.4 Cut-off criteria

All raw materials submitted for the formulations and production data were taken into consideration. The manufacture of machinery, plants and other infrastructure required for production of the products under review was not taken into consideration in the LCA.

Transport of packaging materials is also excluded.

3.5 Background data

Data from the /GaBi 6/ database was used as background data. Where no background data was available, it was complemented by manufacturer information and literary research.

3.6 Data quality

Representative products were applied for this EPD and the product in a group displaying the highest environmental impact was selected for calculating the LCA results. The datasets are less than 5 years old. Production data and packaging are based on details provided by the manufacturer. The formulation used for evaluation refers to a specific product.

3.7 Period under review

Representative formulations were accepted by FEICA Ltd and collected in 2011.

3.8 Allocation

No allocations were applied for production. A multiinput allocation with a credit for electricity and thermal energy was used for incineration of production residues and packaging materials. The credits achieved through packaging disposal are declared in Module D.

4. LCA: Scenarios and additional technical information

The following technical information forms the basis for the declared modules or can be used for developing specific scenarios in the context of a building evaluation if modules are not declared (MND).

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel	0.0016	l/100km
Transport distance	1000	km
Capacity utilisation (including empty runs)	85	%
Gross density of products transported	1100 - 2500	kg/m³
Capacity utilisation volume factor	1	-

Installation into the building (A5)

Name	Value	Unit
Material loss	0.01	kg
VOC in the air (NMVOC)	0.02	kg

3.9 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account. In this case, 1 kg reactive resin was selected as the declared unit. Depending on the application, a corresponding conversion factor such as the specific unit area must be taken into consideration.

5. LCA: Results

PRODUCT STAGE CONSTRUCTI STAGE USE STAGE END OF LIFE STAGE LOAD BEYOND A SYSTE BOUNDA Image: Stage in the stage in	PRO	DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)																
Image: Transmission of the state of the		DUCT S	TAGE	ON PRO	OCESS	USE STAGE						END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES		
X X	Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment		Operational energy use	Operational water	De-construction demolition	Transport	Waste processing	Disposal	
RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 kg reactive resin based on epoxy resin, filled and/or aqueous filled Parameter Unit A1-A3 A4 A5 D Global warming potential [kg CO ₂ Eq.] 2.63E+0 4.91E-2 9.15E-2 -1.50E- Depletion potential of the stratespheric ozone layer [kg CO ₂ Eq.] 2.63E+0 4.91E-2 9.15E-2 -1.50E- Acidification potential of the stratespheric ozone layer [kg CO ₂ -Eq.] 6.51E-3 1.20E-4 1.39E-5 -5.43E- Eutrophication potential ftmg Opotential [kg PO ₄)*Eq.] 6.92E-4 3.11E-5 2.58E-6 -4.40E- Formation potential for non-fossil resources [kg SD-Eq.] 1.48E-5 1.33E-9 1.10E-9 -4.53E- Abiotic depletion potential for non-fossil resources [MJ] 6.72E+1 6.76E-1 2.01E-2 -1.55E+ RESULTS OF THE LCA - RESOURCE USE: 1 kg reactive resin based on epoxy resin, filled and/or aque filled Parameter Unit A1-A3 A4 A5 D Renewable primary energy resources [MJ] 3.34E+0 IND IND IND Non-renewable primary energy res	A1	A2	A3	A4	A5	B1	B2	B 3	B4	В	5	B6	B7	C1	C2	C3	C4	D
and/or aqueous filled Parameter Unit A1-A3 A4 A5 D Global warming potential [kg CO_FEq.] 2.63E+0 4.91E-2 9.15E-2 -1.50E- Depletion potential of the stratospheric ozone layer [kg CC11-Eq.] 2.60E+10 2.02E+13 3.84E+13 -1.01E-7 Acidification potential of land and water [kg SO_FEq.] 6.51E-3 1.20E+4 1.39E-5 5.43E- Eutophication potential [kg (POu)P-Eq.] 6.92E-4 3.11E-5 2.58E-6 4.40E- Formation potential for non-fossil resources [kg 9 Ehene-Eq.] 1.42E-3 -3.41E-5 7.22E-3 -7.46E- Abiotic depletion potential for fossil resources [kg 9 Ehene-Eq.] 1.42E-3 -3.41E-5 1.20E+2 -1.55E+ RESULTS OF THE LCA - RESOURCE USE: 1 kg reactive resin based on epoxy resin, filled and/or aqueofilled ND ND ND Renewable primary energy as energy carrier [MJ] 0.00E+0 IND IND IND Renewable primary energy as energy carrier [MJ] 0.34E+0 NPE-2 2.25E-3 -2.2	Х	X	Х	X	Х	MND	MND	MNR	MNR	MN	١R	MND	MNE	MND	MND	MND	MND	X
Global warming potential [kg CO2_Eq.] 2.63E+0 4.91E-2 9.15E-2 -1.50E- Depletion potential of the stratospheric ozone layer [kg CC2-Eq.] 2.63E+0 2.02E+13 3.84E+13 -1.01E- Acidification potential of land and water [kg SO2-Eq.] 6.51E-3 1.26E+4 1.39E+5 -5.43E- Eutrophication potential of tropospheric ozone photochemical oxidants [kg ethene-Eq.] 1.42E+3 -3.41E-5 7.22E+3 -7.46E- Abiotic depletion potential for non-fossil resources [kg thene-Eq.] 1.44E+5 1.39E+9 1.10E+9 -4.53E Abiotic depletion potential for fossil resources [MJ] 6.72E+1 6.76E+1 2.01E+2 -1.55E+ RESULTS OF THE LCA - RESOURCE USE: 1 kg reactive resin based on epoxy resin, filled and/or aque Mult A1-A3 A4 A5 D Renewable primary energy as energy carrier [MJ] 0.00E+0 IND IND IND Total use of renewable primary energy as energy carrier [MJ] 4.09E+1 IND IND IND Non-renewable primary energy as energy carrier [MJ] 4.09E+1 IND IND					\ - EN\	VIRON	MENT	AL IN	IPACT	:11	kg I	reactiv	ve re	sin bas	ed on	ероху	resin	, filled
Depletion potential of the stratospheric ozone layer [kg CFC11-Eq.] 2.50E-10 2.02E-13 3.84E-13 -1.01E-7 Acidification potential of land and water [kg SO_zEq.] 6.51E-3 1.26E-4 1.39E-5 -5.43E-5 Eutrophication potential [kg (PQ ₄)*Eq.] 6.92E-4 3.11E-5 2.58E-6 -4.40E-5 Formation potential for pospheric ozone photochemical oxidants [kg ethene-Eq.] 1.42E-3 -3.41E-5 7.22E-3 -7.46E-5 Abiotic depletion potential for non-fossil resources [kg Sb-Eq.] 1.46E-5 1.93E-9 1.10E-9 -4.53E-5 Abiotic depletion potential for fossil resources [kg Sb-Eq.] 1.46E-5 1.93E-9 1.10E-9 -4.53E-5 RESULTS OF THE LCA - RESOURCE USE: 1 kg reactive resin based on epoxy resin, filled and/or aque filled Mon-renewable primary energy as energy carrier [MJ] 3.34E+0 IND IND IND IND IND IND IND IND Total use of renewable primary energy as anterial utilization [MJ] 3.34E+0 3.79E-2 2.25E-3 -2.27E-2 -2.27E-2 -2.27E-2 -2.27E-2 -2.26E-3 -2.27E-2 </td <td></td> <td></td> <td></td> <td>Param</td> <td>eter</td> <td></td> <td></td> <td></td> <td>Unit</td> <td></td> <td></td> <td>A1-A3</td> <td></td> <td>A4</td> <td></td> <td>A5</td> <td></td> <td>D</td>				Param	eter				Unit			A1-A3		A4		A5		D
Addification potential of land and water Ikg SO ₂ -Eq.] 6.51E-3 1.26E-4 1.39E-5 -5.43E- Eutrophication potential Eutrophication potential [kg (PO ₄) ³ -Eq.] 6.92E-4 3.11E-5 2.58E-6 -4.40E- Abidic depletion potential of non-fossil resources [kg Sb-Eq.] 1.42E-3 -3.41E-5 7.22E-3 -7.46E- Abidic depletion potential for non-fossil resources [kJ] 6.72E+1 6.76E-1 2.01E-2 -1.55E+ Abidic depletion potential for fossil resources [MJ] 6.72E+1 6.76E-1 2.01E-2 -1.55E+ RESULTS OF THE LCA - RESOURCE USE: 1 kg reactive resin based on epoxy resin, filled and/or aque filled Image: State Sources Renewable primary energy as energy carrier [MJ] 3.34E+0 IND IND IND Total use of renewable primary energy resources [MJ] 3.34E+1 IND IND IND Non-renewable primary energy as energy carrier [MJ] 4.09E+1 IND IND IND Non-renewable primary energy as material utilization [MJ] 4.09E+1 IND IND IND Non-renewable primary energy resources <t< td=""><td></td><td colspan="3"></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-1.50E-1</td></t<>															-1.50E-1			
Eutrophication potential [kg (PO ₄)*-Eq.] 6.92E-4 3.11E-5 2.58E-6 4.40E- Formation potential of tropospheric ozone photochemical oxidants [kg ethene-Eq.] 1.42E-3 -3.41E-5 7.22E-3 -7.46E- Abiotic depletion potential for non-fossil resources [kg Sb-Eq.] 1.46E-5 1.93E-9 1.10E-9 -4.53E- Abiotic depletion potential for fossil resources [MJ] 6.72E+1 6.76E-1 2.01E-2 -1.55E+ RESULTS OF THE LCA - RESOURCE USE: 1 kg reactive resin based on epoxy resin, filled and/or aque filled Parameter Unit A1-A3 A4 A5 D Renewable primary energy as energy carrier [MJ] 3.34E+0 IND IND IND IND Total use of renewable primary energy resources [MJ] 4.09E+1 IND IND IND IND Non-renewable primary energy as material utilization [MJ] 4.09E+1 IND IND IND IND Non-renewable primary energy as material utilization [MJ] 4.09E+1 IND IND IND Total use of non-renewable primary energy resources [MJ] 0.00E+0							layer											
Formation potential of tropospheric ozone photochemical oxidants Ikg ethene-Eq. 1.42E-3 -3.41E-5 7.22E-3 -7.46E- Abiotic depletion potential for non-fossil resources [kg Sb-Eq.] 1.46E-5 1.93E-9 1.10E-9 -4.53E- Abiotic depletion potential for fossil resources [MJ] 6.72E+1 6.76E-1 2.01E-2 -1.55E+ RESULTS OF THE LCA - RESOURCE USE: 1 kg reactive resin based on epoxy resin, filled and/or aque filled Parameter Unit A1-A3 A4 A5 D Renewable primary energy as energy carrier [MJ] 0.34E+0 IND IND IND Total use of renewable primary energy resources [MJ] 3.34E+0 3.79E-2 2.25E-3 -2.27E-2 Non-renewable primary energy as meterial utilization [MJ] 4.09E+1 IND IND IND Non-renewable primary energy as meterial utilization [MJ] 2.88E+1 IND IND IND Non-renewable primary energy resources [MJ] 6.97E+1 6.79E-1 2.38E-2 -1.60E+0 Use of non-renewable primary energy resources [MJ] 0.00E+0 0.00E+0 0.0		A																
Abiotic depletion potential for non-fossil resources [kg Sb-Eq.] 1.46E-5 1.93E-9 1.10E-9 4.53E- Abiotic depletion potential for fossil resources [MJ] 6.72E+1 6.76E-1 2.01E-2 -1.55E+ RESULTS OF THE LCA - RESOURCE USE: 1 kg reactive resin based on epoxy resin, filled and/or aque filled Non-reside primary energy as energy carrier [MJ] 3.34E+0 IND IND IND Renewable primary energy resources as material utilization [MJ] 0.00E+0 IND IND IND IND Total use of renewable primary energy as energy carrier [MJ] 4.09E+1 IND IND IND IND Non-renewable primary energy as energy carrier [MJ] 4.09E+1 IND IND IND IND Non-renewable primary energy as material utilization [MJ] 2.88E+1 IND IND IND Total use of non-renewable primary energy resources [MJ] 0.00E+0 <td colspan="5"></td> <td></td> <td colspan="2"></td> <td></td> <td colspan="2"></td> <td></td> <td></td>																		
Abiotic depletion potential for fossil resources [MJ] 6.72E+1 6.76E-1 2.01E-2 -1.55E+1 RESULTS OF THE LCA - RESOURCE USE: 1 kg reactive resin based on epoxy resin, filled and/or aque filled Parameter Unit A1-A3 A4 A5 D Renewable primary energy as energy carrier [MJ] 3.34E+0 IND IND IND IND Renewable primary energy resources as material utilization [MJ] 0.00E+0 IND IND IND IND Total use of renewable primary energy resources [MJ] 3.34E+0 3.79E-2 2.25E-3 -2.27E-2 Non-renewable primary energy as energy carrier [MJ] 4.09E+1 IND IND IND Non-renewable primary energy as material utilization [MJ] 2.88E+1 IND IND IND Total use of non-renewable primary energy resources [MJ] 6.97E+1 6.79E-1 2.38E-2 -1.60E+0 Use of secondary material [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 <td>Format</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td colspan="2"></td> <td></td> <td colspan="2"></td> <td></td> <td></td>	Format																	
RESULTS OF THE LCA - RESOURCE USE: 1 kg reactive resin based on epoxy resin, filled and/or aque filled Parameter Unit A1-A3 A4 A5 D Renewable primary energy as energy carrier [MJ] 3.34E+0 IND IND IND IND Renewable primary energy resources as material utilization [MJ] 0.00E+0 IND IND IND IND Total use of renewable primary energy resources [MJ] 3.34E+0 3.79E-2 2.25E-3 -2.27E-2 Non-renewable primary energy as material utilization [MJ] 0.39E+1 IND IND IND Non-renewable primary energy as material utilization [MJ] 2.38E+1 IND IND IND Non-renewable primary energy as material [Kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable primary energy resources [MJ] 6.97E+1 6.79E-1 2.38E-2 -1.60E+0 Use of renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E															2.01E	-2		
Renewable primary energy as energy carrier [MJ] 3.34E+0 IND IND IND Renewable primary energy resources as material utilization [MJ] 0.00E+0 IND IND IND IND Total use of renewable primary energy resources [MJ] 3.34E+0 3.79E-2 2.25E-3 -2.27E-2 Non-renewable primary energy as energy carrier [MJ] 4.09E+1 IND IND IND Non-renewable primary energy as material utilization [MJ] 4.09E+1 IND IND IND Non-renewable primary energy as material utilization [MJ] 4.09E+1 IND IND IND Total use of non-renewable primary energy resources [MJ] 6.97E+1 6.79E-1 2.38E-2 -1.60E+4 Use of renewable secondary material [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of net fresh water [m³] 2.07E-2 6.65E-5 2.35E-4 -1		JLTS						E: 1	(g reac	tive	e re	sin ba	ised	on epox	ky resi	in, fille	d and	/or aqueous
Renewable primary energy resources as material utilization [MJ] 0.00E+0 IND IND IND Total use of renewable primary energy resources [MJ] 3.34E+0 3.79E-2 2.25E-3 -2.27E-2 Non-renewable primary energy as energy carrier [MJ] 4.09E+1 IND IND IND Non-renewable primary energy as material utilization [MJ] 2.88E+1 IND IND IND Total use of non-renewable primary energy resources [MJ] 6.97E+1 6.79E-1 2.38E-2 -1.60E+4 Use of secondary material [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0									Unit					A 4				
Total use of renewable primary energy resources [MJ] 3.34E+0 3.79E-2 2.25E-3 -2.27E-2 Non-renewable primary energy as energy carrier [MJ] 4.09E+1 IND IND IND Non-renewable primary energy as material utilization [MJ] 4.09E+1 IND IND IND Non-renewable primary energy as material utilization [MJ] 2.88E+1 IND IND IND Total use of non-renewable primary energy resources [MJ] 6.97E+1 6.79E-1 2.38E-2 -1.60E+0 Use of secondary material [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of net fresh water [m³] 2.07E-2 6.65E-5 2.35E-4 -1.91E-4 RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg reactive resin based on epoxy resin, filled and/or aqueous filled <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
Non-renewable primary energy as energy carrier [MJ] 4.09E+1 IND IND IND Non-renewable primary energy as material utilization [MJ] 2.88E+1 IND IND IND Total use of non-renewable primary energy resources [MJ] 6.97E+1 6.79E-1 2.38E-2 -1.60E+4 Use of secondary material [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of net fresh water [m³] 2.07E-2 6.65E-5 2.35E-4 -1.91E-4 RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg reactive resin based on epoxy resin, filled and/or aqueous filled 1.91E-4	Re							n										
Non-renewable primary energy as material utilization [MJ] 2.88E+1 IND IND IND Total use of non-renewable primary energy resources [MJ] 6.97E+1 6.79E-1 2.38E-2 -1.60E+4 Use of secondary material [Kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of net fresh water [m³] 2.07E-2 6.65E-5 2.35E-4 -1.91E-4 RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg reactive resin based on epoxy resin, filled and/or aqueous filled									_									
Total use of non-renewable primary energy resources [MJ] 6.97E+1 6.79E-1 2.38E-2 -1.60E+0 Use of secondary material [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of net fresh water [m³] 2.07E-2 6.65E-5 2.35E-4 -1.91E-4 RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg reactive resin based on epoxy resin, filled and/or aqueous filled 0.00E+0																		
Use of secondary material [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of not fresh water [m²] 2.07E-2 6.65E-5 2.35E-4 -1.91E-4 RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg reactive resin based on epoxy resin, filled and/or aqueous filled -1.91E-4																		
Use of renewable secondary fuels [MJ] 0.00E+0 0		Total use of non-renewable primary energy resources									-							
Use of non-renewable secondary fuels [MJ] 0.00E+0 <		TOLATUS	Use	enewable of secon	darv mat	erial			Ikal			E+0		0.00E+0				
RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg reactive resin based on epoxy resin, filled and/or aqueous filled		Total us	Use	e of secon	dary mat								-					
1 kg reactive resin based on epoxy resin, filled and/or aqueous filled			Use of	e of secon renewable	dary mate seconda	ary fuels	6		[MJ]		0.00	E+0 E+0		0.00E+0 0.00E+0		0.00E+0)	0.00E+0 0.00E+0
			Use Use of Jse of no	e of secon renewable n-renewal	dary mate seconda	ary fuels Idary fuels	3		[MJ] [MJ]		0.00	E+0 E+0		0.00E+0 0.00E+0		0.00E+0)	0.00E+0
	RESL	U JLTS	Use of Use of no Use of no U	e of secon renewable n-renewal lse of net t IE LCA	dary mate e seconda ble secor fresh wate	ary fuels Idary fuels er ITPUT	FLOW		[MJ] [MJ] [m ³]	STE	0.00 0.00 2.07	E+0 E+0 'E-2 \TEG (0.00E+0 0.00E+0 6.65E-5		0.00E+0)	0.00E+0 0.00E+0
Hazardous waste disposed [kg] 1.09E-4 3.22E-7 6.99E-9 -6.38E-5	RESL	U JLTS	Use of Use of no Use of no U	e of secon renewable n-renewal lse of net t IE LCA in bas	dary mate e seconda ble secor fresh wate - OU ed on	ary fuels Idary fuels er ITPUT	FLOW		[MJ] [MJ] [m ³] D WAS d and/o	STE	0.00 0.00 2.07 C/	E+0 E+0 E-2 ATEGO BOUS f		0.00E+0 0.00E+0 6.65E-5 S:		0.00E+0 0.00E+0 2.35E-4)	0.00E+0 0.00E+0
	RESL	U JLTS	Use of Jse of no Use of no Use of no Use of no	e of secon renewable n-renewal lse of net t IE LCA in bas Parar	dary mate e seconda ble secor fresh wate - OU ed on neter	ary fuels idary fuels er TPUT epoxy	FLOW		[MJ] [MJ] [m ³] D WAS d and/o Unit	STE	0.00 0.00 2.07 C/	E+0 E+0 E-2 ATEG(eous f		0.00E+0 0.00E+0 6.65E-5 S: A4		0.00E+0 0.00E+0 2.35E-4 A5		0.00E+0 0.00E+0 -1.91E-4
	RESL	U JLTS	Use of Jse of no Use of no U OF TH Ve res	e of secon renewable n-renewal lse of net t IE LCA in bas Parar ardous wa	dary mati e seconda ble secor fresh wate - OU ed on neter aste dispo	ary fuels idary fuels er TPUT epoxy	FLOW		[MJ] [MJ] [m ³] D WAS d and/c Unit [kg]	STE	0.00 0.00 2.07 C/ que A1- 1.09	E+0 E+0 E-2 ATEG(Cous f A3 E-4		0.00E+0 0.00E+0 6.65E-5 S: A4 3.22E-7		0.00E+0 0.00E+0 2.35E-4 A5 6.99E-9		0.00E+0 0.00E+0 -1.91E-4 D -6.38E-9
	RESL	U JLTS	Use of Jse of no U OF TH Ve res Haz Non-h	e of secon renewable n-renewal lse of net t IE LCA in bas Parar ardous wa azardous	dary mate seconda ble secor fresh wate of on ed on neter aste dispo waste dispo	ary fuels idary fuels er TPUT epoxy osed sposed	FLOW		[MJ] [MJ] [m ³] D WAS d and/o Unit [kg] [kg]	STE or a	0.00 0.00 2.07 C/ QUO A1- 1.09 3.11	E+0 E+0 E-2 ATEG(Cous f A3 E-4 E-2		0.00E+0 0.00E+0 6.65E-5 S: A4 3.22E-7 9.66E-5		0.00E+0 0.00E+0 2.35E-4 A5 6.99E-9 1.38E-3		0.00E+0 0.00E+0 -1.91E-4
Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0	RESL	U JLTS	Use of Jse of no Use of no U OF TH Ve res Haz Non-h Rad	e of secon renewable n-renewable lse of net to IE LCA in bas Parar ardous wa azardous wa azardous wa	dary mate seconda ble secon fresh wate - OU ed on neter aste disponent waste disponent aste disponent	ary fuels idary fuels er TPUT epoxy osed sposed osed	FLOW		[MJ] [MJ] [m ³] [D WAS d and/o Unit [kg] [kg] [kg]	STE or a	0.00 0.00 2.07 C/ que A1- 1.09 3.11 9.81	E+0 E+0 E-2 ATEG(Cous f A3 E-4 E-2 E-4		0.00E+0 0.00E+0 6.65E-5 S: A4 3.22E-7 9.66E-5 9.27E-7		0.00E+0 0.00E+0 2.35E-4 A5 6.99E-9 1.38E-3 1.47E-6		0.00E+0 0.00E+0 -1.91E-4 D -6.38E-9 1.76E-3
	RESL	U JLTS	Use of no Use of	e of secon renewable n-renewal lse of net i IE LCA in bas Parar ardous wa azardous wa azardous wo omponent daterials fo	dary mate seconda ble secord fresh wate ed on neter aste disponent waste disponent aste disponent aste disponent solution sol	ary fuels idary fuels er TPUT epoxy osed sposed osed se Ig	FLOW		[MJ] [MJ] [MJ] [D WAS d and/o Unit [kg] [kg] [kg] [kg]	STE or a	0.00 0.00 2.07 C/ que A1- 1.09 3.11 9.81 0.00 0.00	E+0 E+2 ATEG(eous f A3 E-4 E-2 E-4 E-4 E+0 E+0 E+0		0.00E+0 0.00E+0 6.65E-5 S: A4 3.22E-7 9.66E-5 9.27E-7 0.00E+0 0.00E+0		0.00E+C 0.00E+C 2.35E-4 A5 6.99E-9 1.38E-3 1.47E-6 0.00E+C 0.00E+C		0.00E+0 0.00E+0 -1.91E-4 D -6.38E-9 1.76E-3 -1.80E-5 0.00E+0 0.00E+0
	RESL	U JLTS	Use of no Use of no Use of no Use of no Use OF TH ve res Haz Non-h Rad C C Mate	e of secon renewable n-renewal lse of net 1 IE LCA in bas Parar ardous wa azardous wa azardous wa concerto w omponent Aterials for er	dary mate e seconda ble secon fresh wate ed on neter aste disp waste dis aste disp s for re-u or recyclin nergy reo	ary fuels dary fuels er TPUT epoxy osed osed osed se ug overy	FLOW		MJ MJ m ³ D WAS d and/o Unit kg kg kg kg kg kg kg	STE or a	0.00 0.00 2.07 C Q Q Q Q Q Q Q Q	E+0 E+0 E-2 ATEG(eous f A3 E-4 E-2 E-4 E-2 E-4 E+0 E+0 E+0 E+0		0.00E+0 0.00E+0 6.65E-5 S: 44 3.22E-7 9.66E-5 9.27E-7 0.00E+0 0.00E+0 0.00E+0		0.00E+C 0.00E+C 2.35E4 A5 6.99E-9 1.38E-3 1.47E-6 0.00E+C 0.00E+C 0.00E+C		0.00E+0 0.00E+0 -1.91E-4 D -6.38E-9 1.76E-3 -1.80E-5 0.00E+0 0.00E+0 0.00E+0
Exported thermal energy [MJ] 0.00E+0 0.00E+0 2.67E-1 0.00E+0	RESL	U JLTS	Use of no Use of no Use of no Use of no Use OF TH ve res Haz Non-h Rad C C Mate Exp	e of secon renewable n-renewal lse of net i IE LCA in bas Parar ardous wa azardous wa azardous wa azardous wa azardous fo ioactive w pomponent laterials for er poorted elec	dary mate e seconda ble secon fresh wate ed on neter aste dispo waste dis aste dispaste disp aste dispaste disp s for re-u or recyclin nergy reco ctrical ene	ary fuels dary fuels er TPUT epoxy osed osed osed se ug overy argy	FLOW		MJ MJ MJ MJ M D WAS d and/o Unit Kg Kg Kg Kg Kg Kg Kg Kg	STE or a	0.00 0.00 2.07 C / QU A1 - 1.09 3.11 9.81 0.00 0.00 0.00	E+0 E+0 E-2 ATEGO Cous f E-4 E-2 E-4 E+0 E+0 E+0 E+0 E+0 E+0		0.00E+0 0.00E+0 6.65E-5 S: A4 3.22E-7 9.66E-5 9.27E-7 0.00E+0 0.00E+0 0.00E+0 0.00E+0		0.00E+C 0.00E+C 2.35E4 A5 6.99E-9 1.38E-3 1.47E-6 0.00E+C 0.00E+C 0.00E+C 1.14E-1		0.00E+0 0.00E+0 -1.91E-4 D -6.38E-9 1.76E-3 -1.80E-5 0.00E+0 0.00E+0 0.00E+0 0.00E+0

6. LCA: Interpretation

All impacts are associated with the production phase (A1-A3). The most significant contribution to the production phase impacts is the upstream production of raw materials as main driver. Another significant contributor in the production phase, in the category of Abiotic Depletion Potential Elements (**ADPE**), is the steel sheet used as a packaging material. The majority of life cycle energy consumption takes place during the production phase (A1-A3). Significant contributions to Primary Energy Demand – Nonrenewable (**PERRT**) derive from the energy resources used in the production of raw materials. The largest contributor to Primary Energy Demand – Renewable (**PERT**) is the consumption of renewable energy resources required for the generation and supply of

electricity. During manufacturing (A1-A3) some influence also arises due to the wooden pallets used as packaging that need solar energy for photosynthesis. It should be noted that Primary Energy Demand – Renewable (**PERT**) generally represents a small percentage of the production phase primary energy demand with the bulk of the demand coming from non-renewable energy resources. Transportation to the construction site (A4) and the installation process (A5) make a negligible contribution to almost all impacts. The only exception is the photochemical ozone creation potential (**POCP**) that is significantly influenced by the installation of the product due to emissions of benzyl alcohol of maximum 2%. This leads to a contribution of the installation phase of

up to 80% on the overall life cycle of the product. Emissions associated with the manufacturing of products (A3) only have a minor influence on POCP. In module A4, transport to construction site, values for POCP are negative due to emission profile modelled for the selected transportation process and of the characterisation method used in CML 2001 for the calculation of the POCP. Scrap burdens and energy credit from incineration of packaging material reported in module D are not important (contribution <2.5% for most results). CO_2 is the most important contributor to Global Warming Potential (GWP). For the Acidification Potential (AP), NO_x and SO_2 contribute to the largest share.

7. Requisite evidence

voc

Special tests and evidence have not been carried out or provided within the framework of drawing up this Model EPD. Some member states require special documentation on VOC emissions into indoor air for specific areas of application. This documentation, as well as documentation for voluntary VOC labelling, has to be provided separately and is specific for products in question.

Evidence pertaining to VOC emissions shall show

- either an attestation of compliance with,

- or documentation of test data that are required in, any of the existing regulations or in any of the existing voluntary labeling programs for low-emitting products, as far as these

(1) include limits for the parameters TVOC, TSVOC, carcinogens, formaldehyde, acetaldehyde, LCI limits for individual substances (including but not limited to the European list of harmonized LCIs), and the R value;

(2) base their test methods on /CEN/TS 16516/ (or /EN 16516/, after the on-going revision of /CEN/TS 16516/);

(3) perform testing and apply the limits after 28 days storage in a ventilated test chamber, under the conditions specified in /CEN/TS 16516/; some regulations and programs also have limits after 3 days, on top of the 28 days limits; (4) express the test results as air concentrations in the European Reference Room, as specified in /CEN/TS 16516/.

Examples of such regulations are the Belgian /Royal Decree C-2014/24239/, or the German /AgBB/. Examples of such voluntary labeling programs are EMICODE, Blue Angel or Indoor Air Comfort.

Relevant test results shall be produced either by an /ISO 17025/ accredited commercial test lab, or by a qualified internal test lab of the manufacturer. Examples for the applied limits after 28 days storage in a ventilated test chamber are:

- TVOC: 1000 μg/m³
- TSVOC: 100 μg/m³
- Each carcinogen: 1 µg/m³
- Formaldehyde: 100 µg/m³
- LCI: different per substance involved

- R value: 1 (meaning that, in total, 100% of the combined LCI values must not be exceeded).

Informative Annexes (2 tables):

The table shown below is an overview of the most relevant regulations and specifications as of April 2015, as regards requirements after 3 days storage in a ventilated test chamber.

	TVOC [µg/m³]	Sum of carcinogens. C1A,CA2 [µg/m³]	Formal- dehyde [µg/m³]	Acet- aldehyde [µg/m³]	Sum of Form- and Acet- aldehyde
German DIBt/AgBB regulation	10 000	10	-/-	-/-	-/-
draft Lithuanian regulation	10 000	10	-/-	-/-	-/-
EMICODE EC1	1 000	10	50	50	50 ppb
EMICODE EC1 PLUS	750	10	50	50	50 ppb

The table above provides an overview of the most relevant regulations and specifications as of April 2015, as regards requirements after 28 days storage in a ventilated test chamber. Some details may be missing in the table due to lack of space. Values given represent maximum values/limits.

	TVOC [µg/m³]	TSVOC [µg/m³]	Each carcinogen C1A,CA2 [µg/m³]	Formaldehyde [µg/m³]	Acetaldehyde [µg/m³]	LCI	R value	Specials	Sum non-LCI & non- identified [µg/m ³]
Belgian regulation	1000	100	1	100	200	Belgian list	1	Toluene 300 μg/m³	-/-
French regulations class A+	1000	-/-	-/-	10	200	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
French regulations class A	1500	-/-	-/-	60	300	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
French regulations class B	2000	-/-	-/-	120	400	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
French regulations class C	>2000	-/-	-/-	>120	>400	-/-	-/-	List of 8 VOCs, 4 CMR	-/-
German DIBt/AgBB regulation	1000	100	1	100	1200	German AgBB list	1	-/-	100
draft Lithuanian regulation	1000	100	1	product type specific	-/-	Lithua- nian list	1	-/-	-/-
EMICODE EC1	100	50	1	(after 3 days)	(after 3 days)	-/-	-/-	-/-	-/-
EMICODE EC1 ^{PLUS}	60	40	1	(after 3 days)	(after 3 days)	German AgBB list	1	-/-	40
Finnish M1, sealants	20	-/-	1	10	-/-	-/-	-/-	Ammonia, odour	-/-
Finnish M1, adhesives	200 µg/m²h	-/-	5 µg/m²h	50 μg/m²h	-/-	-/-	-/-	Ammonia, odour	-/-

8. References

PCR 2013, Part A

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report; 2013-04 www.bau-umwelt.de

PCR 2012, Part B

Product Category Rules for Building Products, Part B: Requirements on the EPD for reactive resin products, 2012-07 www.bau-umwelt.de

2000/532/EC

Commission decision dated 3 May 2000 replacing decision 94/3/EC on a waste directory in accordance with Article 1 a) of Council Directive 75/442/EEC on waste and Council decision 94/904/EC on a directory

of hazardous waste in terms of Article 1, paragraph 4 of Directive 91/689/EEC on hazardous waste

ISO 7619-1:2012-02

Rubber, vulcanized or thermoplastic - Determination of indentation hardness - Part 1: Durometer method (Shore hardness)

ISO 7619-2:2012-02

Rubber, vulcanized or thermoplastic - Determination of indentation hardness - Part 2: IRHD pocket meter method

EN 923

Adhesives -Terms and definitions

EN 14293:2006-10

Adhesives – Adhesives for bonding parquet to a subfloor – Test methods and minimum requirements

EN 14259:2004-07

Adhesives for floor coverings – Requirements on mechanical and electric performance

EN 1504-2:2005-01

Products and systems for the protection and repair of concrete structures – Definitions, requirements, quality control and evaluation of conformity – Part 2: Surface protection systems for concrete

EN 12190:1998-12

Products and systems for the protection and repair of concrete structures - Test methods - Determination of compressive strength of repair mortar

EN 1015-17:2005-01

Methods of test for mortar for masonry – Part 17: Determination of water-soluble chloride content of fresh mortars

EN 1504-5:2005-03

Products and systems for the protection and repair of concrete structures – Definitions, requirements, quality control and evaluation of conformity – Part 5: Injecting concrete components

EN 1062-6:2002-10

Paints and varnishes – Coating materials and coating systems for exterior masonry and concrete – Part 6: Determination of carbon dioxide permeability

EN ISO 7783:2012-02

Paints and varnishes – Determination of water-vapour transmission properties – Cup method

EN 1062-3:2008-04

Paints and varnishes – Coating materials and coating systems for exterior substrates and concrete – Part 3: Determining water permeability

EN 1542-2:1999-07

Products and systems for the protection and repair of concrete structures – Test methods – Determining the adhesive strength in a pull-off test

EN 1771-2:2004-11

Products and systems for the protection and repair of concrete structures – Test methods – Determining the injectability and splitting tensile strength

EN ISO 3219:1994-10

Plastics – Polymers/Resins in liquid state or as emulsions or dispersions – Determination of viscosity using a rotational viscometer with defined shear rate

EN ISO 9514:2005-07

Paints and varnishes – Determination of the pot life of multi-component coating systems – Preparation and conditioning of samples and guidelines for testing

EN 13813:2003-01

Screed material and floor screeds – Screed materials – Properties and requirements

EN 13892-8:2003-02

Test procedures for masonry – Part 8: Determining tensile strength

EN 13501-1:2010-01

Classification of building products and methods by fire

performance – Part 1: Classification with the results of tests on fire performance by building products

EN 12004:2012-09

Adhesives for tiles – Requirements, evaluation of conformity, classification and designation

EN 12003:2009-01

Adhesives for tiles – Determining the shear strengths of reactive resin adhesives

EN 1346:2007-11

Adhesives for tiles – Determining the open time; EN 1346:2007

ETAG 022:2007-07

Guidance for European Technical Approval of watertight Covering Kits for Wet Room floors and or walls, Part 1: Liquid-applied coverings with or without wearing surface

ETAG 005:2004-03

Guideline for European Technical Approval of liquidapplied roof waterproofing kits, Part 1: General

ETAG 033:2010-09

Guideline for European Technical Approval of liquidapplied coverings for concrete bridges

EN ISO 2811-1:2011-06

Paints and varnishes – Determination of density - Part 1: Pycnometer method

EN ISO 1522:2007-04

Paints and varnishes - Pendulum damping test

CEN/TS 14472 -1 to 4:2003-10

Resilient, textile and laminate floor coverings – Design, preparation and installation – Part 1: General; Part 2: Textile floor coverings; Part 3: Laminate floor coverings; Part 4: Resilient floor coverings

CEN/TS 15717:2008-07

Parquet flooring - General guideline for installation

EWC 080112: 2000/532/EC

Paint and varnish waste

EWC 080111: 2000/532/EC

Waste paints and varnishes containing solvents or other dangerous substances

EWC 080410: 2000/532/EC

Adhesive and sealant compound waste

EWC 080409: 2000/532/EC

Waste adhesives and sealants containing solvents or other dangerous substances

EN ISO 9001:2008-12

Quality management systems - Requirements

ISO 16000-3:2002-08

Indoor air – Part 3: Determination of formaldehyde and other carbonyl compounds by sampling using a pump

ISO 16000-6:2004-12

Indoor air – Part 6: Determination of volatile organic compounds indoors and in test chambers by sampling on TENAX TA®, thermal desorption and gas chromatography using MS or FID

EN ISO 16000-9:2008-04

Indoor air – Part 9: Determination of the emission of volatile organic compounds from building products and furnishings – Emission test chamber method

EN ISO 16000-11:2006-06

Indoor air – Part 11: Determination of the emission of volatile organic compounds from building products and furnishings – Sampling, storage of samples and preparation of test specimens

CEN/TS 16516:2013-10

Construction products - Assessment of release of dangerous substances - Determination of emissions into indoor air

Royal Decree C-2014/24239

Belgisch Staatsblad 8 MEI 2014, p. 60603. — Koninklijk besluit tot vaststelling van de drempelniveaus voor de emissies naar het binnenmilieu van bouwproducten voor bepaalde geoogde gebruiken

GaBi 6 2014

GaBi 6: Software and database for comprehensive analysis. LBP, University of Stuttgart and thinkstep AG, 2014

GaBi 6 2014b

GaBi 6: Documentation of GaBi 6 data sets from the data base for comprehensive analysis LBP, University of Stuttgart and thinkstep AG, 2014 http://documentation.gabi-software

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04 www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@bau-umwelt.com www.bau-umwelt.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 – 3087748 - 29 info@bau-umwelt.com www.bau-umwelt.com
thinkstep	Author of the Life Cycle Assessment thinkstep AG Hauptstrasse 111 - 113 70771 Leinfelden-Echterdingen Germany	Tel Fax Mail Web	+49 (0)711 341817 0 +49 (0)711 341817 25 info@thinkstep.com www.thinkstep.com
J FEICA [®]	Owner of the Declaration FEICA - Association of the European Adhesive and Sealant Industry Avenue E. van Nieuwenhuyse 4 B-1160 Brussels Belgium	Tel Fax Mail Web	+32 (0)267 673 20 +32 (0)267 673 99 info@feica.eu www.feica.eu